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In the structure refinement of Na alum]by,Cromer, Kay & Larson'([Acta Cryst. (1967). 22, 182])the un- 
usual anisotropic thermal parameters of the SO4 group were explained by a coupled rotation about and 
translation along the threefold axis. S and O(1) are on the threefold axis and 0(2) is in a general posi- 
tion. 0(2) thus follows a spiral path on the surface of a cylinder. In the present work the scattering over 
the spiral path was calculated by integrating numerically and taking numerical derivatives. It was then 
evident that a torsional oscillation also exists. Based on the formation developed by Kay & Behrendt, 
a model that adds a torsional oscillation to the screw motion was calculated. In addition, thermal param- 
eters parallel and perpendicular to the threefold axis were applied to the whole group. The thermal 
motion is then described by only five parameters instead of the ten used in the earlier anisotropic refine- 
ment. A result of this treatment is that the bond lengths can be expressed in terms of equilibrium posi- 
tions and are as accurate as the data and potentials allow. The resulting bond lengths are S-O(1)= 
1.476 (6) and S-O(2)= 1.491 (4) .~. The uncorrected lengths from the anisotropic refinement are 1.461 
and 1.459 .~. The Cruickshank rigid body correction increases these bond lengths to 1.475 and 1-483/~ 
and the Schomaker-Trueblood analysis increases them to 1.476 and 1.500/~,. 

Introduction 

All of  the alums crystallize in the cubic space group 
Pa3 with sulfate groups lying on threefold axes. One 
of  the oxygen atoms, which we call O(1), and the 
sulfur atom lie in special positions on the threefold 
axes. The other oxygen atom, O(2), is in a general 
position, and the threefold operation on this atom 
completes the sulfate group. One would expect a priori 
that a major  contr ibution to the total mot ion of these 
sulfate groups would be an oscillation of the group 
about  the symmetry axis. Under  that condit ion the 
major  axis o f  the 0(2) thermal ellipsoid would be 
approximately perpendicular  to the threefold axis. 

In the X-ray and neutron diffraction study of sodium 
a lum NaAI(SO4)z. 12H20, by Cromer,  Kay & Larson 
(1967) (hereafter CKL),  the 0(2)  atom was found to 
have a large and very anisotropic thermal motion. The 
major  axis, with a root-mean-square ampli tude of 
0.361 A ( B =  10.3 A2), makes an angle of 65.5 ° with 
the threefold axis rather than the expected 90 ° . In 
order to explain this orientation, C K L  postulated that 
the sulfate group undergoes a coupled rotat ional- t rans-  
lational mot ion about,  and parallel to, the threefold 
axis. There is a moderately short (2.62 A) hydrogen 
bond between 0(2) and one of the water molecules, 
and the O(2)-H distance in this hydrogen bond is 
1.64 A. The major  axis of  the 0(2)  ellipsoid makes an 
angle of 80 ° with this O(2)-H vector. An r.m.s, motion 
of  0.361 A, by 0(2)  changes the distance from 0(2) to 

* Work performed under the auspices of the U.S. Atomci 
Energy Commission. 

the equi l ibr ium position of  H to 1-61 A. However, if  
this 0.361 A mot ion were directed along a line normal  
to the S-O(2) vector and to the threefold axis, this 
distance would be reduced by 0.13 A. Since there are 
three of  these O(2)-H contacts it seems reasonable 
that as the SO4 group rotates it is forced to translate 
in order to main ta in  a longer O(2)-H distance if  0(2)  
and H undergo independent motion,  i.e. such a trans- 
la t ional-rotat ional  motion would follow a lower poten- 
tial path than would the a priori expected motion 
normal  to the threefold axis. In this postulated motion 
the 0(2)  atom traces out a spiral path on the surface 
of  a cylinder. 

Pertinent results from an anisotropic refinement are 
given in Table 1. These results are slightly different 
from those reported by C K L  because somewhat  dif- 
ferent weights were used in the original work. In all of  
the present calculations unmodified weights obtained 
from the counting statistics (Evans, 1961) were used. 

The above screw mot ion  was explicitly included in 
the structure factor calculation and a least-squares 
refinement was carried out. At the conclusion of  this 
refinement it became evident that the remaining am- 
plitudes included a torsional mot ion  about  the S atom. 
The scattering f rom the torsional oscillator was also 
calculated and another  refinement made. The final 
result is th.at the S-O distances can be directly obtained 
from the equi l ibr ium atomic positions without any a 
posteriori corrections for thermal motion. 

For small oscillations one usually assumes tb.at the 
thermal vibration is fairly well approximated (as indeed 
it almost always is) by an anisotropic Debye-Wal le r  
factor for each atom in the crystal. The motion of the 
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atom is assumed to be harmonic and is represented by 
an ellipsoid describing the r.m.s, amplitude of motion 
in each direction. If large torsional oscillations are 
present, one may make an a posteriori analysis of the 
ellipsoids such as Cruickshank (1956) and Schoemaker 
& Trueblood (1968) have done. If the anharmonicity 
is large enough, the Debye-Waller expression is inad- 
equate. Various authors have described the scattering 
of one-dimensional torsional oscillations, or hindered 
rotations, by infinite series of Bessel functions (King 
& Lipscomb, 1950; Brown & Chidambaram, 1967) or 
by simplified expressions using more severe approx- 
imations (Kay & Behrendt, 1963; Maslen, 1968) which 
can take two-dimensional rather than one-dimensional 
motion into account. The difficulty in deriving such 
expressions arises from averaging the scattering over 
the appropriate probability density function, or, in 
other terms, deriving the Fourier transform of the 
probability densitY. 

For the present case of coupled translational-rota- 
tional motion, which we shall call a spiral motion, our 
approach has been to evaluate the scattering by nu- 
merical integration and, in the least-squares refinement, 
to calculate numerical derivatives. Thus, no approx- 
mations were necessary. For the torsional oscillation 
the formulation developed by Kay & Behrendt (1963), 
hereafter KB, :was used. It should be noted that Mas- 
len's (1968) results are very similar to those derived by 
KB several years earlier. 

Derivation of the spiral scattering 

(a) Statement of the problem 
One may classically describe the probability of an 

atom being in a given region in a potential well by 
means of Boltzmann statistics. If  the potentional is 
V(rn), rn being a vecto/ that  describes the instantaneous 
position of atom n, t t  the reciprocal lattice vector, fn 
the atomic scattering factor and k T  the Boltzmann 
constant multiplied by the absolute temperature, the 

average scattering amplitude from atom n is 

t°° fn(H) exp (2n i H . r  n) e xp [ -  V(rn)/kT]dr t l  
q] oo - -  

gn(H)= 

l ~_ooexp [ -  drn V(r,)/kT] 

(1) 
For the present case let us assume that the 0(2)  

atoms also undergo an isotropic motion superimposed 
on the spiral motion. That is perhaps not the best pos- 
sible assumption but it does permit making a fairly 
simple calculation with a small number of parameters 
having little correlation between different types of 
thermal motion and is a good first test of the method. 

In the following we shall drop the subscript n. Let 
~the isotropic thermal parameter be B, and let r = P + t, 
where P is the vector to the equilibrium position of the 
atom at X o, yo, Z o, and t is the displacement vector 
from P to the instantaneous position of the atom (see 
Fig. 1). If N is the normalization factor in the denom- 
inator of equation (1), then 

g(H) = f ( H )  exp ( -  B sin z 0/22) exp (2hi l l .P)  G 

where 
(2) 

6 ;=  ~ -  _ exp (2hil l . t )  exp [ -  V(r)/kT]dr. (3) 

G is analogous to a temperature factor and will depend 
on the probability density function. Because the trans- 
lation is made proportional to the rotation (for spiral 
motion), the potentional must be a function of the 
angular displacement only. If the angular displacement 
coordinate is 0, we choose 

V(0)= exp ( -  Vo O2/kT) (4) 

as the potentional function. The normalized prob- 

Table 1. Sulfate group parameters from anisotropic refinement (R = 3.66%), with ten thermal parameters 

x y z 
S 0"2653 (1) x x 
O(1) 0"3343 (2) x x 
0(2) 0"2958 (3) . 0"2783 (3) 0-1505 (2) 

O(1) 

O(2) 

r . m . s .  

amplitude 
0.182 (3) A 
0-167 (2) 
0.167 (2) 
0-166 (10) 
0"253 (5) 
0"253 (5) 
0"361 (5) 
0.207 (5) 
0-151 (6) 

fllx × lOS fl22 × lOS fl33 X lOS fl12 × 105 fl13 x 105 flz3 x 105 
392 (7) fi l l  /~11 44 (14) ]/12 fl12 
686 (22) flll f i l l  --322 (44) flt2 fl12 

1358 (41) 725 (31) 514 (24) -969 (56) 761 (51) -109 (46) 

Thermal ellipsoids 

B~ 

2.60 (9) A2 
2-21 (5) 
2.21 (5) 
2.17 (26) 
5.05 (21) 
5.05 (21) 

10.31 (27) 
3.37 (17) 
1"81 (14) 

Direction angles relative to crystal axes 

54.7 o 54.7 ° 54.7 ° 

54"7 54-7 54-7 

31 (1) 115 (1) 73 (1) 
79 (2) 39 (3) 53 (4) 

119 (1) 117 (4) 42 (4) 
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ability density function is 

V( o) P(0)=  ~ exp ( -  Vo OZ/kT) 

V(q)e,p( q02, 
where q=  Vo/kT is a potentional parameter and will 
be one of the least-squares variables. Letting G= 
exp (2rciH. t), then 

G= ~ q  f°°ooGP(O) (6) 

Other potentials might be chosen but any quasi-har- 
monic model should at least approximate qO 2 for small 
0. The simplest model has been arbitrarily chosen. 

(b) Transformation of coordinates and sum over sym- 
metry related atoms 

The problem now becomes one of transforming G 
to a coordinate system in which 0 is the ortly explicit, 
independent integration variable. The 24 0(2) atoms 
lie in groups of three 120 ° apart on circles of radius 0c 
surrounding the threefold axes. The postulated motion 
is one in which a rotation of 0 is proportional to a 
displacement parallel to the threefold axis. The trans- 
formation chosen is to the cylindrical system in Fig. 1. 
X ' Y ' Z '  is a right-handed orthogonal system with Z'  
the axis of rotation and X' passing through the point 
X ° yozo, the equilibrium position of 0(2). We now 

Z" 

i Y 

Fig. 1. Coordinate  systems used for sodium alum. X Y Z  is the 
crystal system. X ' Y ' Z "  is the system used for integration 
where Z '  is parallel to the rotat ion axis [111], X'  is normal  
to Z '  and passes through the equil ibrium posit ion of 0(2)  
at X o y o z o  defined by P, and Y' is normal  to X '  and Z '  

in a r ight-handed system. The instantaneouposi t !on of 0(2) 
is given by r = P + t. Oc is the radius of the cylindrical system 
described in Fig. 2. 

define a cylindrical system, oOZ' with the zero of 0 
at X'. 

The vector t then has components X~=Qc cos 0 -  
0c, Y~ = Qe sin 0, Z~ = MO (see Fig. 2) where M = AZ/Oao 
=screw pitch/ao is the slope of the spiral. The same 
displacement system may be used for the 0(2) atoms 
related by the threefold axis. In this case we introduce 
the rotation angle (p, where q)= 0, + 2rc/3, which relates 
the three atoms: 

x ~ = ~  [cos (0+~o)- cos ~o1 
Y't =Oc [sin (O+cp)- sin ¢] 
Z~=MO (7) 

Since t is expressed in the primed system, H must 
be transformed in such a way that H . t  is invariant. 
For 

y '  = Q-1  y , (8) 

Z '  Z 

if t is in the primed system, H t becomes H. Qt. Be- 
cause Q-1 is orthorgonal, Q = ~-1. 

It can be shown that 

lax Q = au by fl (9) 
az bz y 

where c~fly are direction cosins of Z ' ,  

bz= - ( Y ° y - Z ° f l ) / ( P  sin 9') 
by= -(ZOc~-XOy)/(P sin g) (10) 
bz = - ( X ° f l  - Y°cO/(P sin ~) ,  

az = (buy- bzfl) 
ay = ( bz~ - bxy) (11) 
aa =(bxfl-bvcO 

and v/is the angle between P and Z'. For our present 
purpose this transformation is independent of the shift 
in origin. 

We can write the expression for the scattering am- 
plitude of six 0(2) atoms generated by the threefold 
axis and the center of symmetry as 

2 f  exp ( - B sin 2 0/22) 
&i= N 

{co 2 a.e,S: cos 2 a. e,p (-qO2, dO 
j= l  oo 

+sin 2al l  . Pj I°f- +sinoo 2n:H. Qtj exp (-qO 2) d0} . (12) 

The 0 in the isotropic temperature factor should not 
be confused with. 0 the integration variable. In equation 
(12) H and P are the reciprocal lattice and equilibrium 
atom position vectors in the cell coordinate system, Q 
is given by equations (9), (10) and (11), and tj by equa- 
tion (7) where 99=0, +2rc/3, -2zc/3, as the indexj has 
a remainder 1, 2, 0 modulo 3. Expressions similar to 
equation (12) for the other three sets of six atoms are 
obtained by appropriate modification of Q, i.e. by 
applying the glide operations of the space group to the 
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equilibrium coordinates and direction cosines ap- 
pearing in Q. 

The least-squares variables are then B, X0, y0, Z0, 
q and M. In  this problem the direction cosines of  Z '  are 
fixed by symmetry.  In other cases it would be pos- 
sible, at  least in principle, to define a least-squares 
rotat ion axis. The variable M appears  i n  t, and X 0, 
y0, Z 0 appear  in Q as well as in P. 

In our first model  the usual anisotropic thermal  
parameters  were applied to S and O(1), and a least- 
squares calculation using equat ion (12) and its sym- 
metry related equations for 0(2)  was carried out. At  
first a Simpson's  rule integration was used for equat ion 
(12) and its derivatives, but later a 20-point Gauss ian 
integration was used which was about  four  times 
faster and of  equal accuracy. The results are given in 

Table 2. Al though parameters  for all o the r  atoms, 
including hydrogen, were also refined (as in CKL) ,  
they were hardly affected and we only list parameters  
related to the sulfate group. 

Spiral and torsional oscillation 

Inspection of  Tables 1 and 2 shows that  O(1) has a 
much greater mot ion  than has S perpendicular  to the 
threefold axis. This difference suggests that  the su l fa te  
group has a torsional oscillation about  the S a tom as 
well as the rota t ional- t ransla t ional  motion.  Symmetry  
requires that  O(1) move equally in directions perpen- 
dicular to the threefold axis, and, since we are assuming 
a rigid group,  the 0(2)  atoms can be assumed to have 
this same isotropic mot ion  about  the S-O(2) vectors. 

Table 2. Sulfate group parameters from spiral refinement (R = 3-83%), with seven thermal parameters 

x y z fill x 105 i l l2 x 105 
S 0"2653 (1) x x 390 (7) 49 (15) 
O(1) 0"3342 (2) x x 671 (22) -320 (46) 
0(2) 0-2969 (3) 0"2789 (3) 0"1488 (3) 

0(2) thermal parameters 
q= 11-80(56) radians-2; Mao= -0.627 (38) A,.radian-1 ; ~-21/z=0.179 (3) A; r.m.s, amplitude= 1/l/2q=0.206 radians 

0(1) 

Thermal ellipsoids 

r.m.s. Direction angles relative to crystal axes 
amplitude B~ ~ ,8 Y 
0.182 (3) A. 2.62 (10) A z 54.7 ° 54.7 ° 54.7 ° 
0.166 (2) 2.18 (6) 
0.166 (2) 2.18 (6) 
0-163 (I1) 2.10 (27) 54-7 ° 54-7 ° 54-7 ° 
0.251 (5) 4.95 (22) 
0.251 (5) 4.95 (22) 

Y~= Pc sin(O+ 211/3) 

-- Pc sin 2 

Y,l=PcsinO 

X I 

x#=P~cose-Pc 

= Pc (cosO-1) 

Fig. 2 Cylindrical system looking down Z'. Relationships describe displacement of one 0(2) atom and another one 120 ° from 
the first in terms of X' and Y'. 
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For our final calculation the following model was 
used: (1) the whole group was given two anisotropic 

_ _ .  

temperature factors, /z 2 and /z 2, with respect to the 
threefold axis; (2) the whole group was assumed to 
have a torsional oscillation about the S atom; (3) a 
screw motion was applied to 0(2) as previously de- 
scribed (this motion gives a component parallel to the 
threefold axis for S and O(1) equal to 4rcZMZ/q, which 
must be added to/~]L for these two atoms); (4) stretching 
modes are small and have been ignored; (5) bending 
modes have an average behaviour similar to torsional 
motion; and (6) the screw and torsional motions are 
uncoupled. 

An exact calculation of the scattering from th.e 
torsional oscillation was considered but it was found 
to require a two-dimensional numerical integration. 
Although this calculation is possible it would have 
required an excessive amount of computer time. The 
function finally used was a torsional scattering func- 
tion described by KB (their equation 10). The principal 
assumption they make is that the amplitude of oscil- 
lation is small enough for the approximations sin 0 = 0  
and cos 0 = 1 - 0 2 / 2  to be made. The r.m.s, magnitude 
of the oscillation, o~, can be estimated in the present 
case from the difference between the r.m.s, amplitudes 
of S and O(1) (see Table 2) and the S-O(1) bond length. 
Thus o) ~ (0.2512 _ _  0" 1662)1/2/1 "458 = 0" 129 radian. 

The KB expressions are rather complicated and we 
will not restate them. Because of the present cubic 
symmetry, and the isotropic torsional oscillation the 
expressions reduce considerably. 

To recapitulate, in this final model .we have five 
thermal parameters. A ~2 and /~2 is applied to the 

I 

whole group. A potentional parameter, q, and a 
slope or pitch parameter, M, describe the coupled 
rotational and translational motion. These latter two 
parameters are applied to 0(2) and combine to form 
an additive term to /1~ as applied to S and O(1). 
Finally, a parameter a (in KB notation) is applied to 
O(1) and O(2), where o)= 1/(al/2) is the r.m.s, ampli- 

Table 3. Sulfate group parameters from spiral and tor- 
sional motion refinement (R = 4.41%), with five thermal 

parameters 

x y z 
S 0.2653 (1) x x 
O(1) 0"3350 (3) x x 
0(2) 0"2971 (3) 0.2788 (3) 0"1482 (3) 

q =  17-4 (14) radians -2, Mao= -0.851 (78) A,.radian - l ,  
r.m.s, ampl i tude=  1/1/2q=0"169 radians, 
a=6"45 (28) radians -2 (o9=0.110 radian), 
/t,2 1/2=0.098 (21) A,, p±21/2=0.171 (3) ,~. 

* This pitch includes both spiral and torsional motion. The 
pitch for pure spiral motion is 

[ 0.,692 ] 
-0"851 (0.1692+0.1102) = - 0 - 5 9 8  /~.radian -1. 

tude of torsional oscillation. The results of th.is refine- 
ment are given in Table 3. 

Discussion 

We shall refer to the anisotropic refinement as model 
I, the spiral motion as model 2, and the spiral plus 
torsional oscillation as model 3. Non-sulfate group 
parameters changed very little and are not given here. 
Of these parameters only some of the hydrogen param- 
eters sb_ifled by as much as 2a. Standard deviations 
increase slightly as the number of parameters is re- 
duced. The R indices also increase, more so than Hamil- 
ton's (1965) statistics would predict. The reason for 
th.is increase is probably that the usual anisotropic 
thermal parameters are better able to compensate for 
systematic errors in data, for errors in the scattering 
factors (aspherical atoms and bonding electrons) and 
internal vibrational modes. It was hoped that by set- 
ting the center of libration at the sulfur atom, the 
contributions from the internal bending modes would 
be fairly well approximated. The potentional chosen 
for the libration was quadratic in angles making it 
isotropic about the threefold axis. If the sulfate poten- 
tial is quasi-tetrahedral, then the same isotropic angular 
function could be used (and was used) on each. 0(2). 
The latter assumption is probably very weak. The 
stationary-crystal stationary-counter mode of data 
collection may have introduced a systematic reduction 
of measured intensity at higher angles. 

As expected, the sulfur x parameter remains un- 
changed. Also, as expected, the O(1) x parameter and 
the S and O(1) thermal parameters are essentially the 
same for models 1 and 2. There are a numbzr of con- 
sistencies in th.e motion of the various models. 
In model 1, the r.m.s, amplitude of 0(2) parallel 
to the threefold axis is 0.240 A~. For model 2 
this amplitude is 0.220 A, and for model 3 is 0.226 A~. 
The total group translation parallel to the threefold 
axis in model 3 is given by 

_ _ M 2 ] 1/2 
/~2 + 2q- =0.174 A,, 

in good agreement with the parallel motion of S and 
O(1) in models 1 and 2. The r.m.s, amplitude of tor- 
sional oscillation in model 3 is 0.110 radians, in reason- 
able agreement witb 0.129 radians estimated earlier 
from the difference between/~2 for S and O(1). The 
group/~2 of model 3 is in good agreement with/~2 of 
S in model 1. 

The spiral parameters q and M differ significantly 
for models 2 and 3. This difference is caused by the 
differen*, models chosen for the non-spiral component 
of the motion, in one case an isotropic and in the other 
case a torsional oscillation plus th.e group translations. 
The slope of the spiral, Mao/Oe, where ao is the lattice 
constant, gives th.e cotangent of the angle th.at the 
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motion makes with the threefold axis. For model 2 
this angle is 67.1 +0.8 °, for model 3 it is 67.7+ 1.5 °, 
and the angle between the major axis of 0(2) and the 
threefold axis is 65.5 +3.3 ° in model 1. 

Bond distances and angles are given in Table 4. The 
results show graphically the fact pointed out by Busing 
& Levy (1964) that bond lengths are dependent upon 
the assumed correlation between atomic motions or, 
to say the same thing, upon the potential or the spatial 
probability density function to which it gives rise. 
The approach of putting an assumed probability den- 
sity into the scattering function and doing a least- 
squares refinement on the parameters in the averaged 
scattering function (potentional plus positional) would 
seem to be more satisfactory than correcting the re- 
sults of an incorrect function. Our method gives the 
least-squares equilibrium positional parameters for the 
chosen potential. It should be pointed out here that 
the form of the potentials was chosen for its mathe- 
matical tractability and with the motions hinted at by 
the Debye-Waller factors kept well in mind. In other 
words basic electrostatic interactions are not con- 
sidered and the potential chosen is somewhat arbitrary 
so that the results are not necessarily improved over a 
normal refinement followed by some sort of thermal 
vibration distance correction based on a likely model. 

It is to be noted that functions used to describe the 
two types of motion gave convergent least-squares 
refinements; that the technique of numerical integra- 
tion was successful, and there seems to be no reason 
why it could not be used for more complex probability 
density functions; and that the approximation to tor- 
sional motion seemed to have terms of a size that 
makes the approximation used valid (as determined 
by a debugging run). This is not to say that our phys- 
ical assumptions were correct, but merely that, given 
those assumptions, our method of attacking the prob- 
lem is valid. Table 4 gives bond lengths, angles and 
certain group thermal parameters. The S-O(2) bond 
in model 2 and both bonds in model 3 are longer than 
the uncorrected bond lengths in model 1 by amounts 
more or less consistent with either the riding model, 
the rigid-body correction of Cruickshank (1956) or 
with Schoemaker & Trueblood's (1968) rigid-body an- 
alysis. The agreement with the last model is rather 
good. Since the assumptions used to derive the present 
scattering expresions and the Schoemaker-Trueblood 
analysis are rather similar, this agreement is not too 
surprising. 

In models 2 and 3 the O-S-O angles are both closer 
to the ideal tetrahedral angle. This shift in angle is 
consistent with a displacement of the equilibrium 
position of 0(2) away from the threefold axis by the 
introduction of the spiral motion. 

We would like to thank Dr C. K. Johnson of the 
Oak Ridge National Laboratory for performing the 
Schoemaker-Trueblood rigid-body calculation and for 
several helpful suggestions. 
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The Crystal Structure of Ammonium 1, 1, 2, 6, 7, 7-Hexaeyanoheptatrienide 
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The crystal structure of ammonium 1,1,2,6,7,7-hexacyanoheptatrienide, (NH4CI3H3N6), has been 
determined by single-crystal X-ray diffraction techniques. The compound forms monoclinic crystals 
with a=7.11 (1), b=  13.405 (1), c= 14.199 (3) A and fl= 101041 , (10). There are four formula units in 
the cell. A total of 865 observed independent reflections were measured with a PAILRED diffractometer. 
Working in the space group P2~/c, the trial structure was solved by symbolic addition procedures. 
Least-squares refinement resulted in a conventional R value of 0-069 and a weighted R of 0.031. The 
anion is only slightly distorted from a planar configuration. Observed molecular dimensions are con- 
sistent with those obtained from extended Htickel calculations. 

Introduction 

Previous crystal structure determinations of a m m o n i u m  
tr icyanomethide (Desiderato & Sass, 1965), pyr idinium 
dicyanomethide (Bugg & Sass, 1965), potassium p- 
ni t rophenyldicyanomethide (Sass & Bugg, 1967), and 
dipotassium tetranitroethide (Dyke & Sass, 1968) in- 
dicate a certain degree of non-planari ty is associated 
with. the tr igonally-bonded carbon atom of  the carba- 
nion. A m m o n i u m  1,1,2, 6, 7, 7-hexacyanoheptatr ienide 
is a logical extension of  these studies because of its 
conjugated poly-cyano-substituted character. 

Experimental 

A sample of the a m m o n i u m  salt of  1,1,2,6,7,7- 
hexacyanoheptatrienide, NH4CI3H3N6, was kindly sup- 
plied by Dr  R. E. Benson of E. I. du Pont de Nemours  
and Company  (Williams, Wiley & McKusick,  1962). 
The a m m o n i u m  salt as received consisted of deep 
green prismatic crystals suitable for study without fur- 
ther recrystallization. Study crystals were usually 
0.2 x 0.1 m m  in cross section, and 2 to 3 m m  in length. 
These were mounted  on glass fibers with the crystal 
needle axis, a, parallel to th.e fiber axis. 

Weissenberg and rotation photographs were collect- 
ed with Cu Kc~ radiation (2K~, = 1-54051 ~). Systematic 

absences 

0k0 k = 2 n +  1 
hOl l= 2n + 1 
hkl no conditions 

are consistent with the space group P2i/c(CS2h). The a 
axis and/3 angle cell parameters were determined from 
sodium chloride [a0 ( N a C l ) =  5.637 ~] calibrated rota- 
tion and Weissenberg photographs,  and the b and c 
axis parameters determined with the P A I L R E D  dif- 
fractometer using Mo Kc~ radiation ().K~I=0.70926; 
).K, 2 = 0"71354) : 

a = 7 " l l  (1) A 
b =  13.405 (1) 
c = 14.199 (3) 
/3-- 101°41 , (10). 

The density calculated on the basis of four 
NHgClaH3N6 molecules per unit cell is 1.306 g. cm-3; 
the density measured by flotation in a mixture of 
chlorobenzene and bromobenzene is 1.28 g. cm -3. 

Two sets of  data were collected. The first set was 
collected on film using two crystals, one 0.2 × 0.1 x 0.2 
m m  mounted  along the a axis and one 0.2 x 0-4 x 0.2 
m m  mounted  along the b axis. Multiple-film equi- 
inclination Weissenberg photographs of the h = 0 , 1 , 2 ,  
3,4 and 5 layers, and k = 0 ,  I,2,3 layers were taken 


